Geometric hydrodynamics and infinite-dimensional Newton’s equations
نویسندگان
چکیده
We revisit the geodesic approach to ideal hydrodynamics and present a related geometric framework for Newton's equations on groups of diffeomorphisms spaces probability densities. The latter setting is sufficiently general include compressible incompressible fluid dynamics, magnetohydrodynamics, shallow water systems relativistic fluids. illustrate this with survey selected examples, as well new results, using tools infinite-dimensional information geometry, optimal transport, Madelung transform, formalism symplectic Poisson reduction.
منابع مشابه
infinite dimensional garch models
مدلهای گارچ در فضاهای هیلبرت پایان نامه حاضر شامل دو بخش می باشد. در قسمت اول مدلهای اتورگرسیو تعمیم یافته مشروط به ناهمگنی واریانس در فضاهای هیلبرت را معرفی، مفاهیم ریاضی مورد نیاز در تحلیل این مدلها در دامنه زمان را مطرح کرده و آنها را مورد بررسی قرار می دهیم. بر اساس پیشرفتهایی که اخیرا در زمینه تئوری داده های تابعی و آماره های عملگری ایجاد شده است، فرآیندهایی که دارای مقادیر در فضاهای ...
15 صفحه اولGeometric MCMC for infinite-dimensional inverse problems
Bayesian inverse problems often involve sampling posterior distributions on infinite-dimensional function spaces. Traditional Markov chain Monte Carlo (MCMC) algorithms are characterized by deteriorating mixing times upon meshrefinement, when the finite-dimensional approximations become more accurate. Such methods are typically forced to reduce step-sizes as the discretization gets finer, and t...
متن کاملInfinite Dimensional Geometric Singular Perturbation Theory for the Maxwell-Bloch Equations
We study the Maxwell–Bloch equations governing a two-level laser in a ring cavity. For Class A lasers, these equations have two widely separated time scales and form a singularly perturbed, semilinear hyperbolic system with two distinct characteristics. We extend Fenichel’s geometric singular perturbation theory [N. Fenichel, J. Differential Equations, 31 (1979), pp. 53–98] to the Maxwell–Bloch...
متن کاملGeometric structures on finite- and infinite-dimensional Grassmannians
In this paper, we study the Grassmannian of n-dimensional subspaces of a 2n-dimensional vector space and its infinite-dimensional analogues. Such a Grassmannian can be endowed with two binary relations (adjacent and distant), with pencils (lines of the Grassmann space) and with so-called Zreguli. We analyse the interdependencies among these different structures. Mathematics Subject Classificati...
متن کاملEquations , States , and Lattices of Infinite - Dimensional Hilbert Spaces
We provide several new results on quantum state space, on lattice of subspaces of an infinite dimensional Hilbert space, and on infinite dimensional Hilbert space equations as well as on connections between them. In particular we obtain an n-variable generalized orthoarguesian equation which holds in any infinite dimensional Hilbert space. Then we strengthen Godowski’s result by showing that in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the American Mathematical Society
سال: 2021
ISSN: ['0002-9904', '1936-881X']
DOI: https://doi.org/10.1090/bull/1728